Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38135794

RESUMEN

Photosensitization, a powerful oxidation reaction, offers significant potential for wastewater treatment in the context of industrial process water reuse. This environmentally friendly process can be crucial in reducing water consumption and industrial pollution. The ultimate goal is to complete process water reuse, creating a closed-loop system that preserves the inherent value of water resources. The photosensitized oxidation reaction hinges on three essential components: the photosensitizer, visible light, and oxygen. In this study, we assess the performance of three distinct materials-silica, chitosan, and spongin-as carrier materials for incorporating the phthalocyanine photosensitizer (ZnPcS4) in the heterogenous photosensitization process. Among the three materials under study, chitosan emerged as the standout performer in reactor hydrodynamic performance. In the photooxidation process, the photosensitizer ZnPcS4 exhibited notable efficacy, resulting in a significant reduction of approximately 20 to 30% in the remaining COD concentration of the cellar wastewater. Chitosan demonstrated exceptional hydrodynamic characteristics and displayed a favorable response to pH adjustments within the range of 8 to 10, outperforming the other two carrier materials. To further enhance the efficiency of continuous operation, exploring methods for mitigating photosensitizer bleaching within the reaction medium and investigating the impact of different pH values on the process optimization would be prudent.

2.
Chemosphere ; 328: 138500, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36963577

RESUMEN

Electrocoagulation was investigated as a method for treating wastewater containing polyvinyl acetate (PVAc) from the furniture industry. The study evaluated the evolution of iron concentration and passivation during the treatment process. Laboratory-scale experiments were conducted to evaluate the effects of inter-electrode distance (d), current density, and mode on treatment performance. Three values of d (0.3, 0.6, and 0.9 cm) were studied and found to have no significant effect on performance. However, lower d values resulted in reduced energy consumption due to a decrease in applied voltage. Three values of current density (132, 158, and 197 A m-2) were studied under two current modes, Direct Current (DC) and Alternating Pulsed Current (APC). The best treatment performance for DC occurred under 158 A m-2 (the treated wastewater was characterized by pH = 4.59 ± 0.02, conductivity = 996 ± 21 µS cm-1, COD = 1940 ± 55 mgO2 L-1, TSS = 105 ± 14 mg L-1, and Fe = 50.39 ± 1.87 mgFe L-1). For APC, the best performance was achieved under 197 A m-2 (the treated wastewater was characterized by pH = 6.33 ± 0.06, conductivity = 988 ± 17 µS cm-1, COD = 1942 ± 312 mgO2 L-1, TSS = 199 ± 55 mg L-1, and Fe = 44.68 ± 4.60 mgFe L-1). Despite the promising results, treatment performance was insufficient to meet the legal requirements for water discharge. APC was found to be a more economically viable approach, as it reduced anode wear, electrode passivation, and energy consumption. The quantity of iron released increased with d, and the effect of current density on iron concentration was found to be non-linear. However, applying APC reduced the iron content for all tested current densities. The tests showed that EC was effective in removing chemical oxygen demand (COD) and total suspended solids (TSS), achieving removal efficiencies above 92% and 99%, respectively. However, the studied treatment procedures were insufficient to meet the EU legal requirements for water discharge. Therefore, the obtained wastewater should undergo a post-treatment process.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Diseño Interior y Mobiliario , Óxido de Magnesio , Residuos Industriales/análisis , Concentración de Iones de Hidrógeno , Electrocoagulación/métodos , Electrodos , Hierro/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...